Eecient Elliptic Curve Exponentiation Using Mixed Coordinates

نویسندگان

  • Henri Cohen
  • Atsuko Miyaji
  • Takatoshi Ono
چکیده

Elliptic curve cryptosystems, proposed by Koblitz ((12]) and Miller ((16]), can be constructed over a smaller eld of deenition than the ElGamal cryptosystems ((6]) or the RSA cryptosystems ((20]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate eecient elliptic curve exponentiation. We propose a new coordinate system and a new mixed coordinates strategy, which sig-niicantly improves on the number of basic operations needed for elliptic curve exponentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Efficient Elliptic Curve Exponentiation Using Mixed Coordinates

Elliptic curve cryptosystems, proposed by Koblitz ((11]) and Miller ((15]), can be constructed over a smaller eld of deenition than the ElGamal cryptosystems ((5]) or the RSA cryptosystems ((19]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate eecient elliptic curve exponentiation. We propose a new coordinate system and a new mixed coordinat...

متن کامل

An Efficient Procedure to Double and Add Points on an Elliptic Curve

We present an algorithm that speeds exponentiation on a general elliptic curve by an estimated 3.8% to 8.5% over the best known general exponentiation methods when using affine coordinates. This is achieved by eliminating a field multiplication when we compute 2P + Q from given points P , Q on the curve. We give applications to simultaneous multiple exponentiation and to the Elliptic Curve Meth...

متن کامل

New Formulae for Efficient Elliptic Curve Arithmetic

This paper is on efficient implementation techniques of Elliptic Curve Cryptography. In particular, we improve timings for Jacobiquartic (3M+4S) and Hessian (7M+1S or 3M+6S) doubling operations. We provide a faster mixed-addition (7M+3S+1d) on modified Jacobiquartic coordinates. We introduce tripling formulae for Jacobi-quartic (4M+11S+2d), Jacobi-intersection (4M+10S+5d or 7M+7S+3d), Edwards (...

متن کامل

Zur Effizienz von Elliptische-Kurven-Kryptographie

In this thesis we study the efficiency of elliptic curve cryptography (ECC) over prime fields, especially the point multiplication . There are two ways that lead to a faster point multiplication: The first one is to use algorithms for fast exponentiation. By this the number of point additions and point doublings are reduced. Some of these algorithms are particularly suited for signing, others f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998