Eecient Elliptic Curve Exponentiation Using Mixed Coordinates
نویسندگان
چکیده
Elliptic curve cryptosystems, proposed by Koblitz ((12]) and Miller ((16]), can be constructed over a smaller eld of deenition than the ElGamal cryptosystems ((6]) or the RSA cryptosystems ((20]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate eecient elliptic curve exponentiation. We propose a new coordinate system and a new mixed coordinates strategy, which sig-niicantly improves on the number of basic operations needed for elliptic curve exponentiation.
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملEfficient Elliptic Curve Exponentiation Using Mixed Coordinates
Elliptic curve cryptosystems, proposed by Koblitz ((11]) and Miller ((15]), can be constructed over a smaller eld of deenition than the ElGamal cryptosystems ((5]) or the RSA cryptosystems ((19]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate eecient elliptic curve exponentiation. We propose a new coordinate system and a new mixed coordinat...
متن کاملAn Efficient Procedure to Double and Add Points on an Elliptic Curve
We present an algorithm that speeds exponentiation on a general elliptic curve by an estimated 3.8% to 8.5% over the best known general exponentiation methods when using affine coordinates. This is achieved by eliminating a field multiplication when we compute 2P + Q from given points P , Q on the curve. We give applications to simultaneous multiple exponentiation and to the Elliptic Curve Meth...
متن کاملNew Formulae for Efficient Elliptic Curve Arithmetic
This paper is on efficient implementation techniques of Elliptic Curve Cryptography. In particular, we improve timings for Jacobiquartic (3M+4S) and Hessian (7M+1S or 3M+6S) doubling operations. We provide a faster mixed-addition (7M+3S+1d) on modified Jacobiquartic coordinates. We introduce tripling formulae for Jacobi-quartic (4M+11S+2d), Jacobi-intersection (4M+10S+5d or 7M+7S+3d), Edwards (...
متن کاملZur Effizienz von Elliptische-Kurven-Kryptographie
In this thesis we study the efficiency of elliptic curve cryptography (ECC) over prime fields, especially the point multiplication . There are two ways that lead to a faster point multiplication: The first one is to use algorithms for fast exponentiation. By this the number of point additions and point doublings are reduced. Some of these algorithms are particularly suited for signing, others f...
متن کامل